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Abstract
Chapel is a high-level parallel programming language that imple-
ments a partitioned global address space model (PGAS). Programs
written in this programming model have traditionally been self-
contained entities written entirely in one language. While this ap-
proach enables the compiler to produce better performing code by
doing whole program optimization, it also carries a risk of position-
ing PGAS languages as “island” programming languages.

In this paper we present a tool that lets Chapel programs call
functions and instantiate objects written in C, C++, Fortran 77–
2008, Java and Python. Our tool creates language bindings that
are binary-compatible with those generated by the Babel language
interoperability tool. The scientific community maintains a large
amount of code (mathematical libraries, solvers and numerical
models) written in legacy languages. With the help of our tool,
users will gain access to their existing codebase with minimal effort
and through a well-defined interface.

Knowing the demands of the target audience, we support the
full Babel array API. A particular contribution of this paper is that
we expose Chapel’s distributed data types through our interface
and make them accessible to external functions implemented in
traditional serial programming languages. We anticipate applying
similar concepts to other PGAS languages in the future.

Categories and Subject Descriptors D [12]: 2; D [3]: 4

General Terms Chapel, language interoperability, PGAS, code
generator, compiler

Keywords Chapel, language interoperability, PGAS, compiler,
SIDL, Babel, BRAID, C, C++, Fortran, Java, Python

1. Introduction
Getting developers to adopt a new programming language is a
delicate process. Not only is it necessary to provide convincing new
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features that make adopting a new programming model worthwhile;
it is also instrumental to make it easy to integrate existing code into
new programs. Having good support for interoperability significantly
lowers the hurdle of having to switch, by making it stepwise
progression instead of an all-or-nothing move.

The Partitioned Global Address Space (PGAS) programming
model is tailored towards high performance computing systems.
It combines the performance and data locality (partitioning) fea-
tures of distributed memory with the “programmability” and data
referencing simplicity of a shared-memory (global address space)
model. In PGAS languages, there are multiple execution contexts
(usually one per core1) with separate address spaces, and perfor-
mance is gained by exploiting data locality. Transparent access to
memory locations on other execution contexts is usually supported
by one-sided communication libraries. Languages implementing the
PGAS approach (such as UPC [5], Chapel [7] and X10 [10]) thus
offer a simple/familiar global-view programming model that helps
to reduce development time. The scientific community maintains a
large amount of code written in legacy languages such a C, Fortran,
etc. With the help of our tool, users will be able to gain access to
their existing codebase with minimal effort in these languages. Con-
sequently, basic interoperability with the host languages of these
applications is one of the keys to widespread acceptance of PGAS
languages.

In this paper we present a tool that adds interoperability with
C, C++, Fortran,2 Python and Java to the Chapel programming lan-
guage. Our Chapel language interoperability is the first language
binding to use a new term-based approach to language interoper-
ability called BRAID [4]. BRAID, which is described in detail in
Section 3, is aimed at producing language interoperability code from
a wide variety of interface descriptions.

1.1 Related work
This work builds on previous work done at Lawrence Livermore
National Laboratory by generating language bindings that are binary-
compatible to those generated by the Babel language interoperability
tool [15]. Babel is aimed primarily at the high-performance com-
puting (HPC) community and thus addresses the need for mixing
programming languages in order to leverage the specific benefits
of those languages. Babel allows all of the supported languages to
operate in a single address space. Babel is essentially a compiler
that generates glue code from a specification in a scientific interface
definition language (SIDL) [2]. Prior to this work, there was no sup-

1 In Chapel, it is one per node.
2 In many respects the various incarnations of Fortran are so different that
we actually treat FORTRAN 77, Fortran 90/95 and Fortran 2003/2008 as
separate languages.



port in Babel to support new PGAS languages, like Chapel and X10,
as clients that can interoperate with the traditional HPC languages.

Currently most PGAS languages already offer some form of one-
to-one interoperability with their respective host languages, such
as C for UPC [5] and Fortran for Co-Array Fortran [21]. X10 has
support for calling into C++ or Java, using the native interface [24].
The goal of this work is, however, to connect a PGAS language to
all the languages that are currently used in the HPC community.

1.2 The Challenges
Chapel is a modern high-level parallel programming language
originally developed by Cray Inc. as part of the DARPA HPCS
program [7]. In contrast to traditional programming languages such
as C++, the runtime system of the language takes care of executing
the code in parallel. The language still offers the user fine-grained
control over things such as the data layout and the allocation of
distributed data, but it renders the tedious explicit encoding of
communication through, e. g., a message-passing interface, obsolete.

Interestingly, the main selling points of the language also con-
tribute some of the main challenges for achieving interoperability
with other (PGAS and non-PGAS) programming languages:

Distributed data types. What may seem like a simple variable in a
Chapel source code might actually be a reference to a value that
is stored within an entirely different process running potentially
on a different node. It might even be an array whose elements
are spread out across multiple nodes.

Parallel execution model. In Chapel, parallelism is integrated into
the language (e. g., through forall statements) and the decision
when to off-load work into a separate thread is mostly performed
by the Chapel runtime.

Lack of support for calling into Chapel. Although the Chapel
language has a fully-fledged module system and also some
support for calling functions implemented in C, there are no
provisions for compiling Chapel code into an externally callable
library yet.3 We are currently working with the Chapel develop-
ers to standardize name mangling and other features required
for bi-directional interoperability.

In addition to the aforementioned points, our interoperability ap-
proach must deal with the usual challenges of doing cross-language
development, such as the impedance mismatch of function argu-
ments caused by different representations of scalar data types and
storage formats for compound data types.

1.3 Design goals
Our design goals for the Chapel binding were guided by the needs
of the high-performance computing community. The top priority
here is maximum performance. For users from the HPC community,
it is essential to keep the cost of interoperability low; otherwise, our
solution will not be used. For instance, this implies that serialization
of arguments for external calls is ruled out – when possible – we
should even avoid any copying of function arguments.

We also need to interact correctly with the Chapel runtime.
Language interoperability must not break the expected behavior
of a Chapel program. Overall, our approach should be minimally
invasive. To maximize the acceptance of our solution it is important
that we do not require huge patches to be made to the Chapel
compiler and runtime. As we will explain in Section 4.2.1, we found
it necessary to extend the Chapel runtime to support borrowed arrays
to reduce the overhead associated with passing array arguments back
and forth to external functions.

3 The Chapel team is currently working on supporting an export keyword
to support callbacks from C into Chapel.

2. The Babel interoperability architecture
Babel is a widely-used tool for high-performance language in-
teroperability developed at Lawrence Livermore National Labo-
ratory [13, 15]. Our new tool builds on this work by generating
Babel-compatible language bindings for Chapel.

Babel is instrumental in making large amounts of valuable legacy
code accessible to the developers of newer generations of scientific
codes. To this end, existing code is packaged into components with
a well defined interface encapsulating the legacy code. Interfaces
are described in a scientific interface definition language (SIDL),
which specifies objects, methods and interfaces provided by the
components. The interface specification may also include contracts
for methods and types: pre-conditions, post-conditions, and data
type invariants. The use of Babel is not limited to legacy codes:
another typical use-case would be the combination of multiple
mathematical models, implemented in different languages, to form
a larger multi-model simulation.

The component-based design of Babel is inspired by tech-
nologies such as CORBA [22], COM [25], or more recently XP-
COM [26]. However, Babel’s main focus is the scientific computing
community, which manifests in Babel’s efficient support for array
data types and interoperability with C and Fortran. Babel also sup-
ports remote procedure calls and object serialization [18]; features
that are present in increasingly popular technologies such as Google
Protocol Buffers [17] and Apache Thrift [1].

SIDL provides a language-independent object-oriented program-
ming model and type system. This allows components to share
complicated data structures such as multidimensional arrays, inter-
faces, and structures across various languages. Babel also provides
consistent exception handling semantics across all supported lan-
guages. Babel generates the necessary glue code that maps these
high-level interfaces to a particular language ecosystem. As such,
it can be used stand-alone or as part of the full Common Compo-
nent Architecture [2], which provides additional capabilities such as
dynamic composition of applications.

Out of the box, Babel supports the languages C, C++, Java,
FORTRAN 77, Fortran 90/95, Fortran 2003/2008 and Python. Babel
acts as a compiler that takes SIDL files as input and generates
glue code in the respective languages as output. Babel enables any
supported language to call any other supported language. In contrast,
SWIG [3], another popular language interoperability tool, provides
glue code to make C or C++ callable from a variety of supported
programming languages. SWIG uses an augmented C or C++ header
file as its interface definition.

2.1 Anatomy of a Babel call
A foreign call with Babel starts with the client (known in Babel as
the caller) invoking a stub, which accepts all the arguments of the
method in the native data format (such as value representation or
memory layout) of the client language. The stub is automatically
generated by Babel and is usually output in the client’s language,
or in C, if the native language is not expressive enough to perform
the argument conversion, which often involves byte-level memory
manipulation. Stubs are very small and the compiler can sometimes
inline them. The stub converts the arguments into the intermediate
object representation (IOR) which is Babel’s native data format. It
then calls the server implementation, which also has to accept the
IOR. On the server side resides a skeleton, which does the reverse
operation of converting the IOR into the native representation of
the server (known in Babel as the callee). The skeleton invokes the
implementation which is the actual method to be called. Upon return,
it converts all outgoing arguments and the return value into the IOR
and returns to the Stub, which performs the translation back to the
client’s data format.



2.2 Intermediate Object Representation (IOR)
The IOR is the native format used to define data types specified
in SIDL. Babel uses C to implement the IOR using corresponding
equivalent types when possible, e. g., int32 t for SIDL ints which
are defined to be 32 bits in length. Complex numbers are mapped to
a pair of numbers of the appropriate type using C structs. Support
for arrays is provided using a struct to store the array’s metadata
(such as rank, lower/upper bounds, array ordering, etc.) and a pointer
to the block of memory representing the elements of the array. The
array API then provides methods to access or mutate the elements
of the array and access the various metadata.

Most of the heavy lifting necessary to support classes and
interfaces is also done in the IOR. The IOR representation of an
object contains a virtual function table (called the Entry-Point Vector
or EPV in Babel) which is used to resolve method invocations at
runtime. The IOR also contains pointers to the object’s base class
and to all the implemented interfaces. Moreover, there are EPV-like
entries used by Babel’s instrumentation mechanism (dubbed hooks)
and for contract enforcement [15]. Since the IOR is implemented in
C, Babel requires that all languages it supports to be able to call C
functions and be callable from C.4

Babel’s architecture provides high-performance, bi-directional
language interoperability between multiple languages in a single
executable. It reduces the O(n2) binary mappings between pairs
of programming languages to O(n) mappings between C and each
of the n supported languages. This approach completely hides the
language of implementation from the client code, and server-side
implementations do not need to know what languages will be calling
them. By going through the IOR, it is possible to switch between
different server implementations (in different languages) without
having to recompile the client. It also enabled us to implement
support for Chapel without making modifications to Babel.

3. BRAID: the next-generation interoperability
tool

We implemented all the glue code generation using the BRAID sys-
tem for rewriting abstract intermediate descriptions; thus creating a
new tool that has a command line interface similar to that of Babel.
The new tool is implemented in Python, making it very portable
itself. BRAID is a multi-faceted, term-based system for generating
language interoperability glue code designed and developed as part
of the COMPOSE-HPC project [4] to be a reusable component of
software composability tools.

From a user’s perspective, BRAID is the tool that generates glue
code for parallel PGAS languages, while Babel handles traditional
HPC languages. Eventually, we intend to make this distinction
invisible to the end user by launching both through the same front
end. Figure 1 shows an example invocation for a program written in
Chapel that wants to make calls to an interface that is implemented
in Fortran or Java. Our Chapel language interoperability tool is
the first of several applications envisioned for BRAID including
optimized language bindings for a reduced set of languages and
building multi-language interfaces to code without SIDL interface
descriptions.

The most important difference between BRAID and Babel
is, however, not in the choice of Python as the implementation
language; it is how the language backends are designed: In Babel
each code generator is a fixed-function Java class that builds all the
glue code out of strings. BRAID, on the other hand, creates glue code
in a high-level language-independent intermediate representation

4 Fortran 90/95 breaks this requirement. Babel uses libChasm [23] which
actually reverse engineered a large number Fortran compilers to achieve the
interoperability.

Client/Caller (in Chapel):

braid --client=Chapel interface.sidl
Creates a Chapel module (Stub) implementing interface, which calls an
external library . . .

Server/Callee (in Java):

babel --server=Java interface.sidl
Creates a Java class (Skeleton) for interface with splicer blocks for user code

Server/Callee (in Fortran 2003):

babel --server=F03 interface.sidl
. . . or, e. g., a Fortran module

Figure 1. Usage of BRAID and Babel to generate interface code

(IR). This intermediate representation is then passed to a code
generator which translates it into actual high-level code. At the
moment there are code generators for C and Chapel, and also initial
versions for Fortran, Java and Python. This architecture offers a
higher flexibility than the static approach of Babel: For example,
(object-)method calls in Babel need to be resolved by looking
up the address of the method in a virtual function pointer table.
Since Chapel has no means of dealing with function pointers (it
implements its own object system instead), BRAID’s Chapel code
generator will generate a piece of C code to do the virtual function
call on the fly, and place a static call to this helper function in lieu of
the virtual function call. Using this system we can reduce the number
of times the language barrier is crossed to the minimum, leading
to more code generated in the higher-level language, which again
enables the compiler to do a better job at optimizing the program.

Similar to Babel, BRAID can also be instructed to generate a
Makefile that is used to compile both program and glue code and
link them with any server libraries. The Chapel compiler works by
first translating the complete program into C and then invoking the
system C compiler to create an executable binary. The Makefile
created by BRAID intercepts this process after the C files have been
generated and builds a libtool [16] library instead. Libtool libraries
contain both regular (.o) and position-independent (.so) versions
of all the object files, which can be used for static and dynamic
linking, respectively.

The Chapel language already has basic support for interfacing
with C code via the extern keyword [12]. BRAID uses this
interface as an entry point to open up the language for all the other
languages supported by Babel.

4. The interface
In this section we describe how the Babel IOR is mapped onto the
Chapel data types and what code BRAID generates to translate
between the two representations. The generated glue code must
translate each method argument in both directions, in (going from
client to server) and out (server to back to client). An argument’s
intent (in, out, inout) is a mandatory part of the SIDL interface
specification for each method.

4.1 Scalar datatypes
Table 1 lists the scalar types supported by SIDL and the correspond-
ing Chapel types used by the skeleton or stub while converting
Chapel code from or into the IOR. The SIDL scalar types are (with
the exception of strings) of fixed length and were easy to support
especially since Chapel has parametric support for the number of
bits in the integral and floating point types which map to the same
representation as used by the IOR. It also has native types for both
single-precision and double-precision complex numbers and sup-



SIDL type Size (in bits) Corresponding Chapel type

bool 1 bool
char 8 string (length=1)
int 32 int(32)
long 64 int(64)
float 32 real(32)
double 64 real(64)
fcomplex 64 complex(64)
dcomplex 128 complex(128)
opaque 64 int(64)
string varies string
enum 32 enum

Table 1. Scalar Data Types in SIDL and their Chapel equivalents
on a 64-bit machine

1 void Args Basic testChar stub(
struct Args Basic object∗ self,
/∗ inout ∗/ const char∗∗ c,

4 struct sidl BaseInterface object∗∗ ex) {
// In Chapel, a char is a string of length 1
char babel c;

7 babel c = (int)∗c[0];
(∗self−>d epv−>f testChar)(self, & babel c, ex);
// Sync back using lookup table

10 ∗c = (const char∗)
&chpl char lut[2∗(unsigned char) babel c];

}

Figure 2. Stub code generated by BRAID for Chapel complex and
char types

ports opaque types that allow data to be passed around through
Babel/BRAID back into the original address space. Chapel also
supports enumerated type to defines a set of named constants. On
the other hand, the Babel IOR and the Chapel compiler use different
representations for complex numbers, hence BRAID generates glue
code to pass around copies. Since Chapel does not have a char type,
BRAID needs to generate code to convert Chapel unit-length strings
into chars using a statically allocated lookup table. An example for
passing an inout argument from Chapel to an external function is
shown in Figure 2. Supporting the string type itself was straightfor-
ward because the Chapel representation of strings is similar to the
Babel IOR representation (both use a character array).

4.2 Array implementation
There are two major variations of arrays in Chapel with regards to
how the data is distributed. Chapel arrays can be entirely local, i. e.,
all the array data are allocated at the same logical locale,5 or they
can be distributed over multiple places. BRAID provides support
for both local and distributed arrays.

4.2.1 Local Arrays
We will first deal with Chapel’s local arrays. One of the key features
of SIDL is the support for multi-dimensional arrays. SIDL arrays
come in two flavors: normal and raw [13, Chapter 6.4]. Normal
SIDL arrays provide all the features of a normal SIDL type, while
raw SIDL arrays, called r-arrays, exist to provide a more native,
lower level way to access numeric arrays. SIDL also defines an array
API which the client code uses to prepare the argument passed to
a SIDL method. The implementation code uses the API to retrieve
data and metadata of the incoming array argument.

5 Locales are Chapel’s abstraction for an entity with data processing and
storage capabilities.

Chapel supports generic arrays using the concept of domains [9,
11]. Domains are used to specify the index set including the number
and size of the dimensions. In Chapel, an array maps indices from
a domain to variables of a homogeneous type. This allows Chapel
to easily implement associative arrays, as the indices of a domain
may be of any type. In this work, we concentrate on arrays defined
by unstrided rectangular domains. These are domains where each
dimension is defined by an integral range with unit increments.
Rectangular domains are relatively cheap to manage as they require
only constant space. In local arrays, both the domain and the values
mapped by the domain are kept in local memory. These are similar
to arrays in traditional sequential languages where metadata and all
the array elements are present in the same physical address space.

As SIDL Arrays. In Chapel, we implement normal SIDL arrays
by first converting Chapel arrays into rectangular row-major ordered
arrays and then wrapping this array in a generic custom array type
implementing the SIDL interface. The upper and lower bounds
for each dimension can be obtained from the domain. The bounds
can in turn be used to compute the strides with the knowledge
that rectangular arrays are always stored in row-major order. In
addition, local arrays store data in a contiguous block similar
to C-arrays. The pointer reference to this block of data can be
obtained by invoking an externally defined function and defining
the array argument to have an inout intent. The main challenge
in implementing normal SIDL arrays was to convert the generic
Chapel arrays to their corresponding specific SIDL versions without
duplicating the BRAID library code while generating the IORs.

We use the BRAID code generator to determine array element
types at compile-time and generate the appropriate function calls
to create the SIDL arrays. The SIDL array API allows arbitrary
accesses to the array and respects the row-major ordering of the
Chapel array. Creating the wrapped representation is fairly cheap,
taking O(1) space, because the Babel representation involves gen-
erating the metadata from the Chapel domain information, and no
copying of array elements is involved. In addition, since the wrapper
is defined and managed by the Chapel runtime there is no addi-
tional responsibility for garbage collection. BRAID also supports
rectangular slices on Chapel arrays and generates appropriate code
to compute the metadata required to access the array elements.

As R-Arrays. Unlike SIDL arrays, the SIDL interface enforces
certain constraints on r-arrays. One such constraint requires the
r-arrays to have column-major order. Exposing Chapel arrays as
r-arrays requires transparent conversion of the array to column-
major order when passed over to the server implementation and,
ironically, adds an additional overhead of the data copying. The calls
for these conversions are inserted by the BRAID code generator.
Since SIDL allows r-arrays to have the inout intent, the BRAID
code generator needs to also insert function calls to sync back data
from the column-major ordered r-array into the Chapel array for
arguments with the inout intent. To minimize the amount of copy
operations, thus making the program efficient, we created column-
major ordered and borrowed rectangular arrays in Chapel.

Maximum speed: Borrowed Arrays. Both column-major and bor-
rowed arrays implement the standard Chapel array interface and
inherit all the syntactic sugar support Chapel provides for natively
defined arrays. Hence there is no change in the Chapel code while
using these arrays except during array creation. We require a small
extension to the Chapel compiler to support borrowed arrays. Bor-
rowed arrays have data blocks allocated external to the Chapel
runtime unlike traditional Chapel arrays where each array uses a
data block managed by the Chapel runtime. This avoids superfluous
allocation and deallocation of array data blocks while passing the
array reference between Babel/BRAID calls. It becomes the user’s
responsibility to manage the memory while using borrowed arrays.



// The domain of the distributed array
var overallDomain = [1..8, 1..8];
// Map the domain using a block cyclic domain map
var blockCyclicDomain = overallDomain dmapped

BlockCyclic(startIdx=(1, 1), blocksize=(2, 3));
// Create the distributed array
var blockCyclicArray: [blockCyclicDomain] int;

// Distribution of the block−
// cyclic array on six locales
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
2 2 2 3 3 3 2 2
2 2 2 3 3 3 2 2
4 4 4 5 5 5 4 4
4 4 4 5 5 5 4 4
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

Figure 3. Chapel code snippet displaying use of domain maps to
create a block-cyclic distributed array

4.2.2 Distributed Arrays
Chapel supports global-view (distributed) array implementations
using domain maps [8, 9]. Domain maps are an additional layer
above domains that map indices to locales allowing the user to define
their own, possibly distributed, data distributions. As we did for local
arrays, we concentrate our work only on distributed rectangular
arrays. It is important to note that this places a restriction only on
the index set and not on how the array data is actually distributed.
Hence, these distributed arrays could be using any user-defined data
distribution. Figure 3 shows the creation of a distributed array using
a block-cyclic domain map. Each of the blocks can be considered as
contiguous arrays on a single locale, i. e., a local array. The Chapel
runtime takes responsibility for handling any communication while
accessing non-local elements of the distributed array.

As R-Arrays. Babel requires r-arrays to represent a contiguous
block of local memory when they are passed across language
boundaries. Since distributed arrays are not expected to refer to
a single contiguous block of local memory, one way to enforce
this constraint is to create a local copy of the distributed array
before passing the array to an external function. When the parameter
representing the distributed array is labeled with inout or out intents,
the contents of the local array needs to be synced back into the
distributed array. Accessing elements of the distributed array is
always done via the Chapel runtime which transparently manages
local and non-local accesses.

When a distributed array is used as an argument to a function
defined in the SIDL interface expecting an r-array, BRAID generates
code to convert the distributed array into r-arrays before passing
the array on to the host language. As mentioned earlier, r-arrays
in SIDL are required to refer to a contiguous block of memory in
column-major order. Since distributed arrays are not required to
refer to single contiguous local block of memory, a local contiguous
block of memory is allocated to store the entire distributed array. The
elements of the distributed array are then copied into this array in
column-major order (using our column-major Chapel arrays) before
being passed on to the target function via the IOR. The conversion
of the distributed arrays into local arrays and the corresponding
syncing of local array back into the distributed arrays is done by
BRAID and is completely transparent to the user.

As SIDL Arrays. SIDL arrays are also required to be local arrays
although they do not necessarily need to be contiguous; they may
have a non-zero stride. Since we already support the r-array view
of distributed arrays via copying, we have not implemented explicit
support for the SIDL array view of distributed arrays. Instead we
expose distributed arrays as their own SIDL type.

Direct access: The SIDL DistributedArray type. SIDL and raw
arrays are assumed to be local, hence interoperating with distributed
arrays that are transparently converted into SIDL or raw arrays
requires:

SIDL definition

...
static void matrixMultiply(in rarray<int,2> a(n,m),

3 in rarray<int,2> b(m,o),
inout rarray<int,2> res(n,o),
in int n, in int m, in int o);

6 ...

Generated Chapel client code for R-arrays

// The generated stub method
extern proc ArrayTest ArrayOps matrixMultiply stub(

3 in a: sidl int array, in b: sidl int array,
inout res: sidl int array,
inout ex: sidl BaseInterface object);

6
// The Chapel client accepts any Chapel array
proc matrixMultiply(

9 in a: [? babel dom a] int(32),
in b: [? babel dom b] int(32),
inout res: [? babel dom res] int(32),

12 in n: int(32), in m: int(32), in o: int(32)) {

var ex:sidl BaseInterface object;
15 ...

// Check for rectangular domains, unstrided, etc.
sidl perform sanity check( babel dom res, ”res”);

18 // Glue code to be generated to ensure/create a local Chapel array
var babel data res = sidl get opaque data(res( babel dom res.low));
var babel local res = sidl ensure local array(res, babel data res);

21 var babel res rank = babel dom res.rank;

...
24 // Create the IOR representation of the array

var babel wrapped local res: sidl int array =
sidl int array borrow(

27 int ptr( babel local res( babel local res.domain.low)),
babel res rank, babel res lower[1], babel res upper[1],
babel res stride[1]);

30 ...
// Invoke the stub method to get to the server implementation
ArrayTest ArrayOps matrixMultiply stub(

33 babel wrapped local a, babel wrapped local b,
babel wrapped local res, ex);

36 // Creating a borrowed array is a constant time operation
var babel wrapped local res sarray =

new Array(res.eltType, sidl int array, babel wrapped local res);
39 var babel wrapped local res barray =

sidl create borrowed array2d( babel wrapped local res sarray);

42 // Sync back the data from the local array
sidl sync nonlocal array( babel wrapped local res barray, res);

...

Figure 4. Glue code generated for r-array interoperability

• glue code to be generated to create a local array,
• copying all the data from the distributed array into the local array

before the server method call,
• for inout and out arguments, syncing back the data from the

local array into the distributed array after the method returns.

This copying/syncing of data is expensive and adversely affects the
program’s performance. Figure 4 shows an example of the glue code
generated by BRAID to allow interoperability of rectangular Chapel
arrays as r-arrays. Note that the generated client code accepts any
Chapel array as an argument and then performs validity checks at
compile time and runtime using utility methods. The same code
is generated for all arrays but copying and syncing are effectively
no-ops for local arrays.

To avoid the overhead of copying, we chose to create and expose
distributed arrays as their own SIDL type as shown in Figure 5.
Users can create specific instances of these distributed arrays using



1 package Arrays version 1.3 {
class DistributedArray2dDouble {

void initData(in opaque data);
4

double get(in int idx1, in int idx2);

7 void set(in double newVal, in int idx1, in int idx2);
}
}

Figure 5. SIDL definition for a Distributed array

Chapel as a server language and enjoy the benefits of distributed
computation from the traditional HPC languages which act as client
languages. In addition, the elements of the distributed arrays can
be accessed from the client languages similar to how SIDL array
elements are accessed. The communication required to retrieve
and work with remote elements is handled by the Chapel runtime
and is abstracted away from the client language via the glue code
generated by BRAID. We believe this to be a unique solution to
handle interoperability of distributed arrays not only in Chapel
but also in other PGAS languages using arbitrary communication
libraries.

Figure 7 displays a modified version of the HPCC ptrans [19]
benchmark which uses a server side implementation that works
on the distributed arrays. In the example, the server side imple-
mentation accesses and mutates potentially remote elements of the
distributed array transparently. Detailed timing results from running
this program on a cluster can be found in Section 5.2.

4.3 Objects layout and the handling of foreign objects
SIDL specifies an object-oriented programming model that features
single inheritance, abstract base classes, virtual function calls and
multiple inheritance of interfaces. Class methods may be declared
as virtual, static and final.

The Chapel language has native support for object-oriented
programming which maps nicely onto SIDL and the Babel IOR.
Figure 6 shows an example SIDL definition and the corresponding
code generated by BRAID. In SIDL, multiple classes can be
grouped into packages. With BRAID, we map those to Chapel
modules (cf. line 1). Chapel follows the convention of using the file
name to denote an implicit module. Since Chapel does not know
class methods (static methods in C++ nomenclature) we create an
additional module to serve as a namespace for static methods (cf.
line 3).

The Chapel class holds a member variable self, which holds a
reference to the Babel IOR data structure for that object (cf. line 7).
The default constructor automatically calls the appropriate SIDL
function to initialize this variable with a reference to a new object
(cf. line 8). In addition to that, a second copy-constructor is created
that can be used to wrap an existing IOR-object in a Chapel class (cf.
line 14). The constructor calls the object’s addRef() method which
triggers Babel’s reference counting scheme. Finally, a destructor
is generated, which releases the reference to the IOR object and
invokes the destructor of the IOR (cf. line 20). To bridge the time
until Chapel supports a distributed garbage collector, there is the
delete keyword to explicitly invoke a destructor and free the
memory allocated by an object [11].

The Chapel language in general supports inheritance, however,
it currently6 does not support inheriting from classes that provide
custom constructors. The reason for this is that there is no syntax
yet to invoke parent constructors. We therefore resort to creating

6 We refer to the Chapel Language Specification Version 0.8 [11], see
also [6].

Nodes/locales Pure execution
time

Hybrid execution
time

Overhead
(in %)

4 898.26 893.08 −0.58
6 520.51 540.88 3.91
8 443.74 457.59 3.12
12 343.90 339.42 −1.30
16 221.93 226.60 2.11
24 163.17 169.04 3.60
32 112.11 114.30 1.95
48 112.55 114.77 1.97
64 59.45 60.59 1.91

Table 2. The ptrans Benchmark, hybrid and pure Chapel versions
execution times (in seconds) compared, input matrix is of size
2048× 2048 with a block size of 128

independent versions of each of the classes in an inheritance
hierarchy, with each of the child classes containing definitions for all
the inherited functions. Invocation of virtual methods will still work
as expected, since the function definitions in Chapel are merely stubs
that invoke the actual implementations through a virtual function
table (the EPV, cf. Section 2.2) that is part of the IOR. Using this
mechanism it is possible to write a Chapel class that “inherits” from
a class that was originally implemented in, e. g., C++.

Although the Babel inheritance is not really mapped to the
Chapel type system it is still possible to perform operations such
a typecasting on such objects. The price to pay is a slightly more
verbose syntax. For instance, if an object c of type C implements
an interface I , the syntax to up-cast c to an object i of type I would
be:

var i = new I(c.cast I());

This essentially invokes the copy constructor of I to wrap an up-
casted IOR object returned by the C.cast_I() method. A similar
method is automatically generated for each base class and each
interface implemented by a class.

Manual down-casting is also possible with an automatically
generated function. Let’s assume we have an object b of type B and
we want to cast that to the more specific object c of type C, which
inherits from base class B, we would write:

var c = new C(B static.cast C(b.self));

The down-cast function is naturally not part of any class (B static
is a module), since there are no static member functions in Chapel.

4.4 Using Chapel as a library
So far we only discussed the possibility of calling an external func-
tion from Chapel code. BRAID also allows users to do the opposite
thing, which was necessary to make the DistributedArray inter-
face work. Instead of a stub, BRAID generates a skeleton which
calls the implementation and performs the dual conversion opera-
tions on the arguments (a skeleton treats an in-argument the same
way a stub treats an out-argument). In this case the main program is
still a Chapel program that makes calls to external functions, which
then again call back into Chapel.

We also have a working experimental version that allows the
main program to be written in a language other than Chapel,7 but
this currently relies very much on implementation-specific details of
how the Chapel compiler generates C code to make it work. In the
future, we plan to make this feature more robust by working with
the Chapel team on a standard to create Chapel libraries.

7 In Babel terminology, this means using Chapel as a server implementation
language (invoked via braid --server=Chapel).



SIDL definition Generated Chapel code (abbreviated)

package Inherit version 1.1 {
2 class E2 extends C {

string c();
string e();

5 static string m();
};
}

// Inherit.chpl [implicit module Inherit]
2 use sidl;

module E2 static { // All the static methods of class E2
proc m(): string { ... }

5 }
class E2 {

var self: Inherit E2 object;
8 proc E2() { // Constructor

var ex: sidl BaseInterface object;
this.self = Inherit E2 createObject(0, ex);

11 Inherit E2 addRef stub( this.self, ex); ...
}
proc E2( in obj: Inherit E2 object) { // Constructor for wrapping an existing object

14 this.self = obj;
...
Inherit E2 addRef stub( this.self, ex); ...

17 }
proc ˜E2() { // Destructor

var ex: sidl BaseInterface object;
20 Inherit E2 deleteRef stub( this.self, ex);

...
Inherit E2 dtor stub( this.self, ex); ...

23 }
proc c(out ex: BaseException): string { // Method c

var ior ex:sidl BaseInterface object;
26 string r = Inherit E2 c stub( self, ior ex);

if (!IS NULL(ior ex)) ex = new BaseException(ior ex);
return r;

29 }
...

Figure 6. Mapping SIDL classes into Chapel

5. Experimental Results
5.1 Call overhead—Local/single-node performance
The first benchmark measures the overhead of converting function
arguments from/to Chapel’s native format into the native format of
all the other supported languages. Figure 8 shows the number of
instructions executed on an x86-64 machine8 to invoke a function
in each of the supported languages from Chapel. This number was
measured with the instructions performance counter provided by
the perf [14] interface of Linux 2.6.32. To eliminate the instructions
used for start-up and initialization, the instruction count of one exe-
cution of the benchmark program with one iteration was subtracted
from that of the median of ten runs with 106+1 iterations each. The
result was divided by 106 and plotted into the graph. The plots are
logarithmic in the y-axis. The x-axis denotes the number n of in-
(and out)-arguments passed to the function, so the total number of
arguments was 2·n for the copy and n+ 1 for the sum benchmark.
arguments. The y-axis shows the number of instructions executed
by the benchmark (lower values are better).

In copy, the server functions simply copy over all the ingoing
arguments to the outgoing arguments, to show the overhead incurred
for accessing scalar arguments. In the benchmarks we can see that
Python adds a considerable overhead for the interpreter, which is
comparable to that of Java for a small number of arguments. The
performance of Java does not scale as well; this is because of the
way out-parameters are handled. Since Java does not have pointers,
Babel creates a wrapper object to hold each outgoing argument.
This additional overhead shows especially in the float benchmark
(keep in mind that the function body is empty apart from the copy

8 The test machine was an Intel Xeon E5540 running at 2.53GHz, with 8
threads and 6GiB of main memory running Ubuntu 10.04. We used Chapel
1.3.0 for the client. The servers were compiled with the C, C++ and Fortran
compilers of GCC 4.6.1 using standard optimization settings (-O2). The
Python version was 2.6.5 and we used the SUN HotSpot 64-Bit Server
version 1.6.0.22.

operations), but becomes negligible as more data is being moved,
such as in the string case.

In sum, the sum of all the input arguments is calculated on the
server side. This benchmark is interesting because it shows that Java
outperforms Python even on moderate workloads.

5.2 Local and Distributed Array benchmarks
We would like to mention that the execution times reported in these
benchmarks are to quantify the overhead introduced by BRAID and
not to be used to evaluate the quality code generated by the Chapel
compiler. There is active work being done on the Chapel compiler to
generate optimised code for the combinations of different language
constructs and hardware architectures. We tried to keep our server
implementations as close to the original Chapel implementations as
possible. In addition, all the server code was implemented in C and
compiled using the same flags as the C code produced by the Chapel
compiler. The Chapel implementations to test array overheads ran
on Linux clusters.9 The software versions were identical to those
used for the local tests (Section 5.1). To quantify the overhead of
using BRAID-generated code with Chapel arrays, we implemented
benchmarks with two main variants. The two variants were as
follows:

Using local fragments of SIDL Distributed Arrays. To showcase
our integration of distributed arrays we implemented the daxpy()
function from BLAS [20] in Chapel. This was surprisingly easy
to implement due to advanced support for working with arrays in
Chapel. The implementation was just a single line:

Y = a ∗ X + Y;

The hybrid implementation was about fifteen lines of user code
(this excludes code generated by BRAID). We implemented the

9 The machine was a cluster with 324 nodes and InfiniBand interconnects.
Each node was a 12-core Intel Xeon 5660 running a customized version of
RedHat Linux. Each node had 24 GiB of memory. The Chapel compiler was
configured to use GASnet’s ibv-conduit with the MPI-based spawner.



SIDL definition for methods operating distributed arrays Sample Fortran 2003 server that uses the Chapel distributed array

import Arrays version 1.3;

3 package hpcc version 0.1 {
class ParallelTranspose {

// Utility function that
6 // works on distributed arrays

static void ptransCompute(
in BlockCyclicDistArray2dDouble a,

9 in BlockCyclicDistArray2dDouble c,
in double beta,
in int i,

12 in int j);
}
}

1 ! hpcc ParallelTranspose Impl.F03
module hpcc ParallelTranspose Impl
...

4 subroutine ptransCompute impl(a, c, beta, i, j, exception)
...
implicit none

7 type(hplsupport BlockCyclicDistArray2dDouble t), intent(in) :: a
type(hplsupport BlockCyclicDistArray2dDouble t), intent(in) :: c
real (kind=sidl double), intent(in) :: beta

10 integer (kind=sidl int), intent(in) :: i
integer (kind=sidl int), intent(in) :: j
type(sidl BaseInterface t), intent(out) :: exception

13
! DO−NOT−DELETE splicer.begin(hpcc.ParallelTranspose.ptransCompute)
real (kind=sidl double) :: a ji

16 real (kind=sidl double) :: c ij
real (kind=sidl double) :: new val

19 c ij = get(c, i, j, exception);
a ji = get(a, j, i, exception);
new val = beta ∗ c ij + a ji;

22
call set(c, new val, i, j, exception);
! DO−NOT−DELETE splicer.end(hpcc.ParallelTranspose.ptransCompute)

25 end subroutine ptransCompute impl
...
end module hpcc ParallelTranspose Impl

Client code (in Chapel) that invokes a server code, e. g. in C, Fortran (above), Java, etc., that works with Chapel distributed arrays

// ptransHybrid.chpl [Modified version of ptrans.chpl from the standard Chapel distribution]
use Arrays;

3 use hpcc.ParallelTranspose static;
...
// Utility function provided by BRAID to obtain a reference to the Chapel array

6 extern proc GET CHPL REF(inData): int(32);
...
proc main() {

9 // Create Block−Cyclic distributions
const MatrixDist = new BlockCyclic(startIdx=(1,1), blocksize=(rowBlkSize, colBlkSize));
const TransposeDist = new BlockCyclic(startIdx=(1,1), blocksize=(colBlkSize, rowBlkSize));

12 // Declare domains (index sets) for the Matrix and its transpose
const MatrixDom: domain(2, idxType) dmapped new dmap(MatrixDist) = [1..numrows, 1..numcols];
const TransposeDom: domain(2, idxType) dmapped new dmap(TransposeDist) = [1..numcols, 1..numrows];

15 // Declare the matrices themselves (distributed arrays)
var A: [MatrixDom ] eltType;
var C: [TransposeDom] eltType;

18 ...
forall (i,j) in TransposeDom do {

// Creating wrappers are constant time operations
21 var aWrapper = new Arrays.DistributedArray2dDouble();

aWrapper.initData(GET CHPL REF(A));
var cWrapper = new Arrays.DistributedArray2dDouble();

24 cWrapper.initData(GET CHPL REF(C));

// Call the server function via the ParallelTranspose static stub
27 ParallelTranspose static.ptransCompute(aWrapper, cWrapper, beta, i, j);

...
}

30 }
...

Figure 7. Interoperability of Chapel Distributed arrays
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Figure 9. The daxpy Benchmark, hybrid and pure Chapel versions compared

hybrid version by exposing the BLAS package via SIDL and
using BRAID to generate the Chapel glue code. Since BLAS’
daxpy() expects local arrays as input the hybrid Chapel version
converted local fragments of the distributed arrays into SIDL arrays
before invoking daxpy(). This benchmark displays successful
use of local fragments of distributed arrays as SIDL arrays while
invoking existing third party libraries. Figure 9 shows the variation
in execution times of the hybrid version versus an optimized
Chapel version. The hybrid version is up to ten times as fast as
the corresponding pure Chapel version. This serves as an example
of how BRAID can also be used by developers for rapid prototyping
— first write prototype implementations of their problem with the
simpler Chapel syntax and later optimize code using existing third
party libraries when the need arises.

Parallel calls with SIDL distributed arrays. We implemented the
hybrid (Chapel as client and C as server) version of the HPCC ptrans
benchmark which works with distributed arrays and is used to test
the data transfer capacity of the network where remotely located
data is frequently accessed by a node. Our ptrans implementation,
shown in Figure 7, is a modified version of the one available in the
standard Chapel distribution. We exposed the Chapel distributed
arrays as SIDL objects and allowed an external function, called
ptransCompute(), to be invoked in parallel from the Chapel pro-
gram. Note that the body of this external function is not known to
the Chapel compiler and hence not optimised to overlap communi-

cation with computation. As Table 2 shows, the BRAID-generated
code introduces less than four percent overhead despite lacking this
optimization. The overhead is attributed to the additional function
calls required to invoke the server implementation and also for the
callbacks from the server implementation back into the Chapel run-
time to access and mutate the, possibly remote, elements of the
distributed array.

6. Feature list
The complete list of features supported by the Chapel binding
can be seen in Table 3. Generally speaking, there are no technical
reasons blocking the support of the remaining Babel features and
we expect to implement them in the near future. One interesting
perspective is that BRAID will enable us to generate the code for
contract enforcement directly in Chapel, which should yield better
performance than the route over C that is used by all the Babel
backends.

7. Conclusions and future work
In this paper we showed how to achieve interoperability between
the Chapel (PGAS) language and a diverse array of traditional HPC
languages. Our generated language bindings work both on local and
distributed Chapel programs and support all basic data types and we
provide several options for dealing with distributed data types.



Babel/SIDL Features Status

Scalar data types all
SIDL arrays all* (*no arrays of objects yet)
Raw arrays yes
Generic arrays no
Objects yes
Inheritance yes
static calls yes
virtual method calls yes
structs no
Babel RMI no
Contracts no
Exception handling partial
Enumerations yes

+ Distributed arrays yes* (*not a Babel feature yet)

Table 3. Features supported by BRAID’s Chapel↔ Babel binding

Some of the insights we gained during the design of the Chapel
binding will be valuable to generalize this work for other PGAS
languages: The first lesson learned is that some modifications to the
compiler and runtime system are necessary, such as the introduction
of borrowed arrays to avoid an otherwise costly copy operation,
when passing large amounts of data from an external function to a
Chapel program. The other major insight is that it is even feasible to
support distributed data types without copying, by exposing them
through an interface that is accessible from all languages. In fact,
we defined the DistributedArray interface in SIDL, reusing our
own infrastructure to make it completely portable.

One of the major advantages of the BRAID infrastructure is the
separation of the interface code generation and the actual compila-
tion of high-level intermediate code to source code. This separation
will enable us to generalize the Chapel backend for other PGAS
languages in the future. Backends for X10 and UPC are already
being planned. While some parts, such as the argument conversion
rules, will have to be rewritten, much of the Babel interface code
generation will be reusable — by plugging in new code generator
definitions for those languages. The ultimate challenge will then be
to apply our experience to achieve interoperability between several
PGAS languages, and enable them to share distributed data.
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